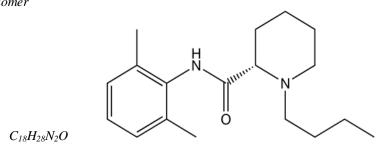
A Review Study on "Levo-Bupivacaine"

Meena Shyam C¹, Dulara Suresh C², Joshi Adhokshaj³, Daria Usha³, Singhal Manoj³, Khedia Chiranji⁴, Meena Samta⁴

¹, Senior resident in anaesthesiology, ². Senior Professor and Head of department of anaesthesia, ³. Assistant professor in anaesthesiology, ⁴. Junior resident in anaesthesiology {Government medical college and attached hospitals, Kota, Rajasthan, INDIA}


Key Words : Levobupivacaine, regional anaesthesia, chemical properties of levobupivacaine,

I. INTRODUCTION

- All Local anaesthetics (LA) agents have three characteristic portions :
- A benzene ring aromatic head
- An intermediate chain
- An amino group
- On the basis of intermediate portion of the molecule: Ester type and Amide type local anaesthetics.
- Ester group LA:-
- · Commonly cause allergic reactions
- Have a short length of action.
- Rapidly metabolized by cholinesterase.
- Amides:-
- Rarely allergic reactions
- But are more likely to cause toxic reactions if the dose is exceeded.

Chemical Structure:

- Amide group LA having asymmetric carbon
- ✤ ([2S]-1-butyl-N-[2, 6-dimethylphenyl] piperidine-2-carboxamide)
- Levo-enantiomer

* Chemical properties of three LA drugs

	Bupivacaine	Ropivacaine	Levobupivacaine
Molecular weight	288	274	288
Liposolubility	30	2.8	30
Protein binding (%)	95	94	97

Pharmacokinetics

- Classic pharmacokinetic studies are usually performed using an intravenous application of the drug.
- Dose as well as route of administration determines plasma concentration .
- Absorption dependent on vascularity of tissue.
- Volume of distribution estimated at 66.91 ± 18.23 L

- pKa 8.1,
- Half-life 3.3 hrs.
- Rate of clearance is 39.06 ± 13.29 L/hr.
- Depending on the pH, amino group can adopt tertiary or quaternary form.
- Protein binding –
- More than 97%, mainly to acid alpha1-glycoprotein, rather than to albumin.
- Racemic bupivacaine (95%).
- Free levobupivacaine, even small fraction can have an action on other tissues, causing unwanted sideeffects.
- In hypo-proteinaemic, undernourished pts, nephrotic pt & in newborn there is less protein for binding, causing higher levels of free drug, resulting in toxic effects seen at lower doses.
- D isomer lower threshold for causing tachycardia & dysrhythmias, than L isomer or racemic preparation which include,
- AV block,
- QRS widening
- Ventricular tachycardia &
- Fibrillation.

Experimental Studies

- Experimental animal study on rats suggested that...
- @ usual doses of 2mg/kg, all animals of dextro group developed apnoea, bradycardia, hypotension & finally died.
- No animal in levo group had apnoea & only 30% had a slight bradycardia.
- · In sheep experiments racemic bupivacaine was administered in toxic quantities,
- Conc. of dextro isomer was higher in myocardium & brain than conc.. of levo isomer.
- Electrophysiological studies demonstrated that blockade of inactive sodium channels is stereoselective, with the D isomer being more potent & faster than the L-isomer. {higher cardiotoxicity A/with D isomer}.

Metabolism

- Extensively metabolised in the liver, primarily by cytochrome P450, especially CYP1A2 & CYP3A4 isoforms.
- Clearance is reduced when hepatic function is damaged.

When minimum concentration (MLAC) is reached to membranes of axons, molecules block sodium channels, in resting position & transmission of nerve impulses stops.

Onset time, duration of action & actions are quite similar to that of racemic substance.

Conc.. requird to produce cardiac & neurotoxicity; is higher for levobupivacaine than racemic bupivacaine. "The safety margin is estimated at 1.3 which means that toxic effects are not seen until the concentration rises by 30%."

Clinical Applications

Galaxie Subarachnoid block

- Similar sensory & motor characteristics & recovery like bupivacaine.
- Minimum effective dose of levobupivacaine as recommended by an up- and-down sequential design study is 11.7 mg.
- Epidural anaesthesia
- Equal doses of levobupivacaine & bupivacaine (15 mL of 0.5%) provide similar onset of sensory block (8-30 min), maximum cephalic spread (T7-T8) & duration of analgesia (4-6 h).
- Continuous infusion of 15 mg/h of levobupivacaine provides effective pain relief in post-op period.

□ Wound infiltration

- Post-incisional wound infiltration with 0.125% levobupivacaine provides more effective & longer duration of analgesia and early mobilization.
- Levobupivacaine has a positive effect on wound healing in earlier period, but had negative effects thereafter by sing wound tension strength.

D Peripheral Nerve Blocks

• Epinephrine does not prolong duration of sensory & motor block with levobupivacaine but may ↓se systemic toxicity.

- Addition of clonidine & fentanyl to levobupivacaine provide excellent analgesia & local anesthetic sparing effect & \$\set\$ se post-operative systemic morphine requirement.
- •
- Conset Time, Quality of Blockade, and Duration of Three-in- One Blocks with Levobupivacaine and Bupivacaine" (Anesth Analg 2003;97:888 –92)

• No significant difference in sensory onset time among the three local anesthetic solutions was observed

Epidural labor analgesia

• Levobupivacaine - provide adequate & safe labor analgesia, without significant influence on mode of delivery, duration of labor, or neonatal outcome.

Ophthalmic Surgery

- 0.75% levobupivacaine provides more effective peribulbar anesthesia & more effective post-op analgesia for vitreo-retinal surgery compared with 0.75% ropivacaine.
- Topical anesthesia with levoisomer 0.75% found to be more effective than lidocaine 2% in preventing pain & improving pt & surgeon comfort during cataract surgery, with less toxicity.

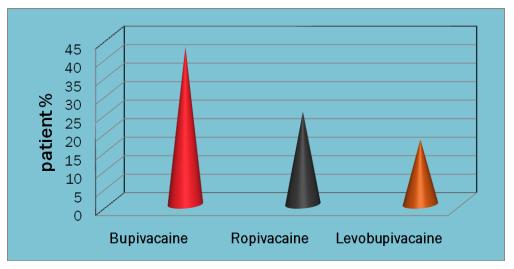
D Pediatric Anesthesia

- > Subarachnoid block
- Dose for spinal anesthesia in neonates is slightly higher.
- Appropriate doses for infant spinal anesthesia are 1 mg/kg of isobaric 0.5% bupivacaine & ropivacaine and 1.2 mg/kg of isobaric 0.5% levobupivacaine

Caudal block : Recommended dose of levobupivacaine 2.5 mg/kg for lower abdominal surgery.

- Geriatric Anesthesia
- In view of safer pharmacological profile, levobupivacaine is considered to be a better local anesthetic than bupivacaine in geriatric population.

□ Adverse reactions


- Hypotension (31%)
- Nausea (21%),
- Vomiting (14%),
- Headache (9%),
- Procedural pain (8%) &
- Dizziness (6%).
- Contraindications:
- □ Contraindicated for IVRA.
- □ Allergy for LA

Generative hypotension requiring treatment with I.V. Ephedrin" (Acta Anaesth. Belg., 2008, 59, 65-71)

A review study on "Levo...

Dorage Recommendations					
	Strength mg/mL	Dose (mL)	Dose (mg)	Motor Block	
Surgical Anaesthesia					
Epidural For Surgery	5.0 - 7.5	10 - 20mL	50 -150mg	Moderate to Complete	
Epidural For Caesarean Section	5.0	15-30mL	75 - 150mg	Moderate to Complete	
PeripheralNerve	2.5 - 5.0	1 - 40mL	Maximum 150mg	Moderate to Complete	
Intrathecal	5.0	3mL	15mg	Moderate to Complete	
Ophthalmic	7.5	5 - 15mL	37.5 - 112.5mg	Moderate to Complete	
Local Infiltration - Adults	7.5	1 - 60mL	Maximum 150mg	Not applicable	
Local Infiltration - Children <12 yrs	2.5 - 5.0	0.25 - 0.50mL/kg	1.25 - 2.5mg/kg	Not applicable	
Pain Management					
Labour Analgesia (epidural bolus)	2.5	10 - 20mL	25 - 50mg	Minimal to Moderate	
Labour Analgesia (epidural infusion)	1.25°	4 - 10mL/h	5 - 12.5mg/h	Minimal to Moderate	
Post-Operative Pain (epidural infusion)	1.25 - 2.5	10 - 15mL/h 5 - 7.5mL/h	12.5 - 18.75mg/h 12.5 - 18.75mg/h	Minimal to Moderate	

"Intraoperative hypotension requiring treatment with I.V. Ephedrin" (Acta Anaesth. Belg., 2008, 59, 65-71)

• <u>Toxicity & Management</u>

- Data suggest up to 20 out of 10,000 peripheral nerve blocks & 4 per 10,000 epidural blocks result in systemic local anaesthetic toxicity.
- Management -
 - Prevention by intermittent aspiration
 - o Early Diagnosis
 - Aggressive fluid therapy
 - ACLS
 - $\circ \quad Early \ 20\% \ intralipid \ administration \ \{0.5 \ ml/kg/min\}$
 - Cardiopulmonary bypass.