# Theoretical calculations of chemical shifts of metal (Hg (II), Pb (II), Ag (I), Zn (II) and Cd (II)) chelates of 1, 2 naphthoquinone 2oxime,

N. R. Gonewar, A.B. Pawar, V. B. Jadhav, K. D. Jadhav, and R. G.

Sarawadekar\*

Bharati Vidyapeeth Deemed University, Pune (India), Yashwantrao Mohite College, Pune 411 038

ABSTRACT : Five metal chelates of the type M(1,2-naphthoquinone, 2-oxime)<sub>2</sub> where M = Ag, Hg, Cd, Zn, Pb, have been synthesized. NMR spectra of proton and carbon 13 have been recorded in CDCl3 of the studied metal chelates and the chemical shifts of proton and carbon 13 are computed by using Gaussian 09 computer code. The Hartree – Fock method was set to calculate the geometry of metal chelates with employing LNNL2DZ basis set. The computed chemical shifts of proton and <sup>13</sup>Carbon have been compared with experimental data and found that these values are in good agreement. The chemical shift of nitrogen, oxygen and metals are also reported.

Key words: 1-Nitroso-2, naphthol, 1-2 Naphthoquinone-2, Oxime, NMR, Metal chelates

## I. Introduction

The structure and conformational equilibrium of the 1,2-naphthquonone mono oximes have been studied by solid and liquid state NMR and non empirical quantum chemical calculations. The presence of syn and anti oximes of 1,2-naphthquonone 2-oxime in solution is proved by NMR spectroscopy(1). The proton (<sup>1</sup>H) and carbon (<sup>13</sup>C) NMR spectra of 2-nitroso, 1-naphthol and the UO<sub>2</sub>(IV) complex of it were recorded and analyzed. The quinonide O does not take part in comlexation with UO2 (IV), which is affected by chelation through the oxime O and N (2). Al, Zn, Cu and Ni(II) salts of 1,2-naphthquonone 2-oximewere synthesized. The proton (<sup>1</sup>H) and carbon (<sup>13</sup>C) spectral data showed that they exist in the quinine oxime form. Some of them gave rise to metalltropic Z and E isomerism (3). 2-nitroso,1 naphthol has great ability to form metal chelates and it is a sensitive and specific reagent for fluorometric determination of tyrosine residues in proteins and peptides (4). NMR chemical shifts of proton (<sup>1</sup>H) and carbon (<sup>13</sup>C). Were calculated by HF method employing 6.31 G level and the data were compared with experimental data by N. R. Gonewar et.al. (5). In this paper we describe

proton ( $^{1}$ H ) and carbon ( $^{13}$ C ) NMR of studied metal chelates the observed data was compared with calculated data by Gaussian 09 software code.

## **II. Materials and Methods**

The ligand 1, 2-naphthoquinone 2-oxime is used as it is. A stock solution of Hg (II), Pb (II), Ag (I), Zn (II) and Cd (II) is prepared by using AR grade chemicals. Distilled water is used during synthesis.

## 2.1 Preparation of metal chelates.

The chelates were prepared by mixing metal salt solution and ligand in 1: 1 proportion for silver and 1:2 for zinc, lead, mercury and cadmium metals. The mixture was constantly stirred for one hour on magnetic stirrer. The pH of the mixture was maintained, in between 5.0 - 6.0 by adding ammonia solution to it. Warm the mixture on water bath for about 15 minutes. On cooling it was filtered and compounds are found to be coloured. These chelates are 1) Ag-2-oximate [Ag(1,2-naphthoquinone, 2-oxime)],

2) Cd-2-oximate [ Cd(1,2-naphthoquinone, 2-oxime)<sub>2</sub> ], 3) Pb-2-oximate [Pb(1,2-naphthoquinone, 2-oxime)<sub>2</sub> ], 4) Zn-2-oximate [ Zn(1,2-naphthoquinone, 2-oxime)<sub>2</sub> ], and 5) Hg-2-oximate [ Hg(1,2-naphthoquinone, 2-oxime)<sub>2</sub> ], ],

## 2.2 Instrumental Analysis.

Elemental analysis was carried out with a Perkin Elmer 2400 series for C, H, O & N. The proton and <sup>13</sup>C NMR spectra recorded in CDCl<sub>3</sub> on Varion. 400 MR

2.2.1 Computational details

The entire calculations conducted in the present work were performed at Hartree – Fock (HF/LANL2DZ) basis set in the Gaussian 09 software code. The geometries were first determined at the Hartree – Fock level of employing LANL2DZ basis set (6,7). The wave number value computed theoretically contains known systematic error due to the negligence of electron correlation. We have used the scaling factor value of 0.9393 for HF /SDD basic set.

# **III. RESULTS AND DISCUSSION**

It is reported that the oxime group proton, the chemical shift is predicted at 8.17 and 8.84 ppm in CD2Cl2 & DMSO solvents respectively (5) and the observed chemical shift is 13.6 ppm in DMSO. This chemical shift is reported as 11.0 ppm in solution by A. E. Shehavlev et.al.(1) and 13.7 ppm is observed by T. Shono et.al.(8).

The chemical shift of the remaining protons values are comparable to calculated d values. It suggests that 2- nitroso 1-naphthol exists only in oxime form. The chemical shift of carbon atom in  $CD_2Cl_2$  and DMSO solvents were calculated and experimental data was obtained in  $CDCl_3$ . It is observed that the chemical shifts of carbon are comparable to each other.

#### 1. Ag- 2-oximate

Fig. 1 shows the structure of Ag 2-oximate and Table: 1 shows chemical shifts of of all atoms present in the studied molecule. The oxime proton is deprotonated hence no chemical shift is predicted. Proton attached to C5 is H12 and its chemical shift is predicted at 9.66 ppm while the observes chemical shift is 8.19 ppm The proton at  $C_{15}$  is  $H_{16}$  and its predicted value is 7.68 ppm which is comparable to experimental value at 8.22 ppm The chemical shifts of the remaining protons are comparable to predicted values. The chemical shift of  $C_1$  is predicted at 141.51ppm and experimental chemical shift is observed at 131.74.The chemical shift of  $C_{11}$  is predicted as 134.54 ppm and the the observed value is 171.71 ppm. This carbon is bonded to oxygen to form C+ O bond. These values are similar to reported data. The nitrogen attached to carbon shows chemical shift at 205.76 ppm. In this silver shows the valence +2 as well as a six member ring formation. The chemical shifts of remaining carbons are within a range of 5-10 ppm which is in good agreement with observed data.

The important bond lengths are presented here as  $Ag_{18}O_{20} - 1.85979 A^{0}$ ,  $Ag_{18}O_{17} - 1.855787 A^{0}$ ,  $N_{19}O_{20} - 1.41572 A^{0}$ ,  $C_{14}N_{19} - 1.43288 A^{0}$ ,  $C_{11}O_{17} - 1.28673 A^{0}$ . The important angles of the six member ring are as follows

$$\begin{split} & N_{19}O_{20}Ag_{18}-88.045^0, \ O_{17}Ag_{18}O_{20}-142.356^{\ 0}, \ N_{19}C_{14}C_{11}-135.205^{\ 0}, \\ & C_{14}C_{11}O_{17}-124.909^{\ 0}, \ Ag_{18}O_{17}C_{11}-96.575^{\ 0} \, . \end{split}$$

| Sr. | Atom | δcal.   | δExp.  |
|-----|------|---------|--------|
| No. |      |         | _      |
| 1   | 12H  | 9.66    | 8.19   |
| 2   | 16H  | 7.68    | 7.99   |
| 3   | 8H   | 7.68    | 7.62   |
| 4   | 9H   | 7.19    | 7.42   |
| 5   | 13H  | 7.17    | 7.25   |
| 6   | 7H   | 6.94    | 6.97   |
| 7   | 14C  | 205.76  | 137.32 |
| 8   | 11C  | 171.71  | 134.54 |
| 9   | 15C  | 142.59  | 132.72 |
| 10  | 1C   | 141.51  | 131.74 |
| 11  | 5C   | 138.15  | 129.72 |
| 12  | 3C   | 137.10  | 128.64 |
| 13  | 2C   | 124.07  | 128.44 |
| 14  | 6C   | 122.90  | 125.98 |
| 15  | 4C   | 118.00  | 122.80 |
| 16  | 10C  | 113.38  | 115.91 |
| 17  | 19N  | 1733.13 |        |
| 18  | 200  | 1313.75 |        |
| 19  | 170  | 276.40  |        |
| 20  | 18Ag | 188.90  |        |

Table: 1 Chemical shifts of NMR of Ag-2-oximate in CDCl<sub>3</sub>



Fig.1 : Molecular structure Ag-2-oximate

#### 2.Cd- 2-oximate

Fig. 2 shows molecular structure Cd-2-oximate and the data of chemical shifts is shown in Table 2. In the case of Cd-2-oximate, after coordination, it is observed that deprotonation is not taking place. Oxime protons  $H_{41}$  and  $H_{39}$  show chemical shifts at 3.35& 2.50 ppm as against predicted shifts at 3.03 & 2.12 ppm respectively which shows good agreement results. Protons nearer to oxime protons  $H_{12}$  and  $H_{37}$  shows predicted values 9.07 & 8.54 ppm which is comparable to experimental values 9.14 & 9.11 ppm respectively. Other protons chemical shifts are comparable to calculated values.

 $^{13}$ C NMR chemical shift of C<sub>11</sub> & C<sub>30</sub> are predicted as 184.11 ppm while the observed values are at 184.37 ppm which is in good agreement with each other. These carbons are involved in to form C=O bonding. The remaining chemical shifts of carbon atoms are comparable to calculated values. Complex is made up of five member ring.

The chemical shift of nitrogen atoms have been predicted as N18 & N<sub>37</sub> as -31.87 & -41.91 ppm. For oxygen atom, the predicted shifts are  $O_{17}$ ,  $O_{36}$ , and O19 &  $O_{28}$  as 516.26, 338.76, 153.75 & 86.60 ppm respectively. The chemical shift for cadmium atom is

predicted at 181.26 ppm.

Table: 2 Chemical shifts of NMR of Cd-2-oximate in CDCl<sub>3</sub>

|     |      |        |        | -   |      |        | - J    |
|-----|------|--------|--------|-----|------|--------|--------|
| Sr. | Atom | δ      | δ      | Sr. | Atom | δ      | δ      |
| No. |      | cal.   | Exp.   | No. |      | cal.   | Exp.   |
| 1   | 12H  | 9.07   | 9.14   | 22  | 21C  | 128.25 | 131.32 |
| 2   | 31H  | 8.54   | 9.11   | 23  | 20C  | 127.80 | 130.54 |
| 3   | 7H   | 7.44   | 7.89   | 24  | 6C   | 127.35 | 129.61 |
| 4   | 16H  | 7.37   | 7.57   | 25  | 15C  | 126.86 | 129.44 |
| 5   | 8H   | 7.31   | 7.52   | 26  | 2C   | 126.47 | 128.86 |
| 6   | 13H  | 7.18   | 7.50   | 27  | 25C  | 125.14 | 126.91 |
| 7   | 26H  | 7.01   | 7.13   | 28  | 3C   | 124.15 | 126.29 |
| 8   | 9H   | 6.89   | 7.11   | 29  | 34C  | 120.30 | 125.58 |
| 9   | 32H  | 6.88   | 7.05   | 30  | 22C  | 119.89 | 122.23 |
| 10  | 28H  | 6.86   | 7.02   | 31  | 33C  | 117.90 | 120.71 |
| 11  | 27H  | 6.79   | 6.67   | 32  | 23C  | 117.59 | 117.49 |
| 12  | 35H  | 6.74   | 6.64   | 33  | 4C   | 117.00 | 117.49 |
| 13  | 41H  | 3.03   | 3.35   | 34  | 14C  | 105.69 | 115.67 |
| 14  | 39H  | 2.12   | 2.50   | 35  | 18N  | -31.87 |        |
| 15  | 11C  | 210.74 | 184.37 | 36  | 37N  | -41.91 |        |
| 16  | 30C  | 184.11 | 184.37 | 37  | 170  | 516.26 |        |
| 17  | 10C  | 147.08 | 145.31 | 38  | 360  | 338.76 |        |
| 18  | 29C  | 136.67 | 136.62 | 39  | 190  | 153.75 |        |
| 19  | 1C   | 136.64 | 134.53 | 40  | 280  | 86.60  |        |
| 20  | 5C   | 135.79 | 133.09 | 41  | 40Cd | 181.26 |        |
| 21  | 24C  | 130.47 | 132.92 |     |      |        |        |



Fig. 2 Molecular structure Cd-2-oximate

## 3.Pb-2-oximate

Table-3 shows chemical shifts of Pb-2-oximate and Fig. 3 shows the molecular structure. The oxime protons  $H_{40}$  &  $H_{39}$  show chemical shifts at 6.64 and 1.25 as compared to predicted values at 4.07 and 3.26 ppm respectively.  $H_{12}$  and  $H_{31}$  protons are nearer to oxime protons and the predicted chemical shifts are at 9.07 & 8.54 pp while the observed values are at 9.14 & 9.11 ppm respectively. Remaining chemical shifts of protons are comparable to predicted values.

<sup>13</sup>C NMR spectra shows the chemical shifts of carbon at 182.8456 & 147.8693 for C=O bonding while the observed values are 131.32 & 132.72 ppm respectively. The bond between C-N shows the predicted shifts for carbon C14 & C33 as 162.13 & 160.92 ppm while the observed value is 132.77 ppm. It is observed after coordination which demonstrates the strong interaction of the ligand and the central metal atom after coordination.Chemical shift of N<sub>18</sub> and N<sub>37</sub> is predicted as 307.93 &370.83 ppm, for oxygen predicted shifts are at 356.38, 314.17, 108.04 & 96.82 ppm for O<sub>17</sub>, O<sub>36</sub>, O<sub>19</sub> and O<sub>38</sub> respectively. The chemical shift for lead Pb<sub>41</sub> metal is predicted at 11.68 ppm. These chemical shifts were computed using "gauge-including atomic orbital's" (GIAO) methods (9-11) implemented in Gaussian 09 program.

| Sr. | Atom | δ      | δ      | Sr. | Atom | δ      | δ      |
|-----|------|--------|--------|-----|------|--------|--------|
| No. |      | cal.   | Exp.   | No. |      | cal.   | Exp.   |
| 1   | 12H  | 8.32   | 8.35   | 22  | 6C   | 126.87 | 126.35 |
| 2   | 31H  | 8.18   | 8.19   | 23  | 5C   | 124.83 | 125.97 |
| 3   | 16H  | 7.57   | 8.16   | 24  | 24C  | 123.37 | 125.97 |
| 4   | 9H   | 7.25   | 8.14   | 25  | 20C  | 122.45 | 125.27 |
| 5   | 28H  | 7.25   | 8.03   | 26  | 1C   | 122.19 | 125.27 |
| 6   | 35H  | 7.22   | 8.02   | 27  | 29C  | 121.93 | 122.80 |
| 7   | 13H  | 7.20   | 8.01   | 28  | 10C  | 120.21 | 122.80 |
| 8   | 32H  | 7.18   | 7.99   | 29  | 23C  | 116.49 | 77.31  |
| 9   | 26H  | 7.01   | 7.72   | 30  | 4C   | 115.67 | 77.31  |
| 10  | 7H   | 6.98   | 7.70   | 31  | 22C  | 114.08 | 76.99  |
| 11  | 27H  | 6.82   | 6.92   | 32  | 3C   | 113.14 | 76.99  |
| 12  | 8H   | 6.81   | 6.67   | 33  | 34C  | 107.20 | 76.67  |
| 13  | 40H  | 4.01   | 6.64   | 34  | 15C  | 106.73 | 76.67  |
| 14  | 39H  | 3.26   | 1.25   | 35  | 18N  | 370.83 |        |
| 15  | 14C  | 162.13 | 132.77 | 36  | 37N  | 307.93 |        |
| 16  | 33C  | 160.92 | 132.77 | 37  | 170  | 356.38 |        |
| 17  | 11C  | 157.67 | 131.82 | 38  | 360  | 314.17 |        |
| 18  | 30C  | 153.55 | 131.82 | 39  | 190  | 108.04 |        |
| 19  | 21C  | 129.43 | 129.80 | 40  | 380  | 96.82  |        |
| 20  | 2C   | 128.87 | 129.80 | 41  | 41Pb | 11.68  |        |
| 21  | 25C  | 127.37 | 126.35 |     |      |        |        |

Table: 3 Chemical shifts of NMR of Pb-2-oximate in CDCl<sub>3</sub>



Fig3.: Molecular structure Pb-2-oximate

## 4.Zn-2-oximate

Molecular structure of Zn-2-oximate is shown in Fig. 4 and table-4 shows chemical shifts of Zn-2-oximate, The oxime protons  $H_{39}$  &  $H_{40}$  show chemical shifts at 6.64 and 1.55 as compared to predicted values at 3.14 and 2.52 respectively.  $H_{16}$  and  $H_{35}$  protons are nearer to oxime protons predicted chemical shifts are at 7.43 & 7.73 while the observed values are at 7.56 %7.47 ppm respectively which are in good agreement to each other. Remaining chemical shifts of protons are comparable to predicted values.

The predicted chemical shifts at 225.81 & 216.04 ppm of carbon for C=O carbon bonding while the observed values are as 182.15 & 147.14 ppm respectively. Chemical shift of  $N_{37}$  and  $N_{18}$  is predicted as 31.50 & -31.33ppm this is may due to trans arragment, For oxygen predicted shifts are at 347.15, 310.17, 87.17 & 87.55 ppp  $O_{36}$ ,  $O_{17}$ ,  $O_{19}$  and  $O_{38}$  respectively. The chemical shift for lead Zn41 metal is predicted at 521.91 ppm. The C=O bond length is predicted as 1.34243  $A^{0}$  the C=N is 1.34869  $A^{0}$  and Zn = O is 1387672 A0.

| Sr | Atom | δ      | δ      | Sr  | Atom | δ      | δ      |
|----|------|--------|--------|-----|------|--------|--------|
| No | mom  | cal    | Exn    | No. | mom  | cal    | Exp    |
| 1  | 31H  | 8.64   | 8.37   | 22  | 1C   | 131.09 | 129.78 |
| 2  | 12H  | 8.51   | 8.35   | 23  | 21C  | 130.44 | 129.09 |
| 3  | 27H  | 7.55   | 7.70   | 24  | 2C   | 130.21 | 128.73 |
| 4  | 26H  | 7.48   | 7.58   | 25  | 24C  | 129.91 | 128.43 |
| 5  | 16H  | 7.43   | 7.56   | 26  | 25C  | 128.29 | 128.19 |
| 6  | 32H  | 7.40   | 7.51   | 27  | 5C   | 127.54 | 127.27 |
| 7  | 28H  | 7.39   | 7.49   | 28  | 6C   | 126.70 | 126.34 |
| 8  | 9H   | 7.38   | 7.48   | 29  | 22C  | 125.48 | 125.98 |
| 9  | 35H  | 7.33   | 7.47   | 30  | 15C  | 123.60 | 125.28 |
| 10 | 7H   | 7.32   | 7.46   | 31  | 34C  | 121.92 | 122.80 |
| 11 | 13H  | 7.30   | 7.41   | 32  | 3C   | 121.82 | 77.31  |
| 12 | 8H   | 7.27   | 7.26   | 33  | 23C  | 115.72 | 77.00  |
| 13 | 39H  | 3.14   | 6.64   | 34  | 4C   | 115.08 | 76.68  |
| 14 | 40H  | 2.52   | 1.55   | 35  | 37N  | 31.51  |        |
| 15 | 30C  | 225.81 | 182.15 | 36  | 18N  | -31.33 |        |
| 16 | 11C  | 216.04 | 147.14 | 37  | 360  | 347.15 |        |
| 17 | 33C  | 149.24 | 136.06 | 38  | 170  | 310.17 |        |
| 18 | 29C  | 145.05 | 134.90 | 39  | 190  | 87.55  |        |
| 19 | 10C  | 138.80 | 132.75 | 40  | 380  | 74.94  |        |
| 20 | 14C  | 137.35 | 131.81 | 41  | ZN   | 521.91 |        |
| 21 | 20C  | 136.70 | 130.04 |     |      |        |        |

Table: 4 Chemical shifts of NMR of Zn 2-oximate in CDCl3



Fig4.: Molecular structure Zn-2-oximate

## 5.Mercury 2-oximate

Fig5. Shows molecular structure Hg-2-oximate and Table 5 shows the chemical shifts of all atoms present in the studied molecule. In the case of Hg-2-oximate, after coordination, oxime protons  $H_{39}$  and  $H_{40}$  shows chemical shifts at lower fields at 8.35 for both as against predicted shifts at 1.25 & 8.30 ppm respectively The predicted chemical shifts of protons nearer to oxime proton  $H_{12}$  and  $H_{16}$  are as 6.38 &1.28 ppm which are compared with experimental values as 8.35 & 8.00 ppm. In this case H12 is nearer but  $H_{16}$  is far away in the predicted behavior. Other protons chemical shifts are comparable to calculated values (See Table-5).

Table-5). <sup>13</sup>C NMR spectra shows C=O carbons chemical shift as 182.15 &134.94 ppm for C<sub>11</sub> and C<sub>30</sub>, while calculated values indicate values as 220.76 & 146.29 ppm respectively. It appears that these chemical shifts are in good agreement. The carbons involving in C-N bonding are C<sub>14</sub> and C<sub>33</sub> with chemical shifts as 167.17 &152.33 ppm while the observed values are 147.14 & 137.63 ppm which are found in good agreement. Chemical shift of N<sub>37</sub> and N<sub>18</sub> is predicted as 110.98 & 448.71 ppm, for oxygen predicted shifts are at 463.71, 235.19, 62.34 & 57.53 ppm for O<sub>17</sub>, O<sub>19</sub>, O<sub>36</sub>and O<sub>38</sub>. The chemical shift for Hg<sub>41</sub> metal is predicted at 206.29 ppm.

Table: 5 Chemical shifts of NMR of Hg 2-oximate in CDCl<sub>3</sub>

|     |      |        |        |     | <u> </u> |        | 2      |
|-----|------|--------|--------|-----|----------|--------|--------|
| Sr. | Atom | δ      | δ      | Sr. | Atom     | δ      | δ      |
| No. |      | cal.   | Exp.   | No. |          | cal.   | Exp.   |
| 1   | 12H  | 9.35   | 8.35   | 22  | 3C       | 135.45 | 130.04 |
| 2   | 40H  | 8.330  | 8.35   | 23  | 21C      | 131.11 | 129.78 |
| 3   | 8H   | 8.17   | 8.26   | 24  | 6C       | 130.71 | 129.20 |
| 4   | 31H  | 7.99   | 8.24   | 25  | 2C       | 128.28 | 129.10 |
| 5   | 7H   | 7.67   | 8.19   | 26  | 25C      | 122.63 | 128.73 |
| 6   | 13H  | 7.63   | 8.17   | 27  | 24C      | 121.78 | 128.43 |
| 7   | 16H  | 7.57   | 8.16   | 28  | 23C      | 118.14 | 128.19 |
| 8   | 9H   | 7.39   | 8.14   | 29  | 4C       | 117.90 | 127.89 |
| 9   | 28H  | 7.15   | 8.00   | 30  | 15C      | 117.60 | 127.28 |
| 10  | 35H  | 6.81   | 6.92   | 31  | 29C      | 116.39 | 126.35 |
| 11  | 32H  | 6.74   | 6.89   | 32  | 20C      | 116.18 | 126.01 |
| 12  | 26H  | 6.59   | 6.67   | 33  | 22C      | 114.63 | 125.27 |
| 13  | 27H  | 6.38   | 6.64   | 34  | 34C      | 110.58 | 122.79 |
| 14  | 39H  | 1.28   | 1.69   | 35  | 18N      | 448.65 |        |
| 15  | 11C  | 220.76 | 182.15 | 36  | 37N      | 110.98 |        |
| 16  | 14C  | 167.17 | 147.14 | 37  | 170      | 463.71 |        |
| 17  | 33C  | 152.33 | 137.63 | 38  | 190      | 235.19 |        |
| 18  | 1C   | 148.60 | 136.07 | 39  | 360      | 62.34  |        |
| 19  | 30C  | 146.29 | 134.94 | 40  | 380      | 57.53  |        |
| 20  | 10C  | 144.53 | 132.76 | 41  | 41Hg     | 206.29 |        |
| 21  | 50   | 136 75 | 131 70 |     |          |        |        |



Fig5.: Molecular structure Hg-2-oximate

6. Energy, Dipole moment and point group data of metal chelates have been calculated and shown in Table 6: It is seen from the table that all point group of all metal chelates is same.

|        | Tuble: o Energy, Biopie moment and point group Bata of enerates |           |               |             |  |  |  |  |  |
|--------|-----------------------------------------------------------------|-----------|---------------|-------------|--|--|--|--|--|
| Sr.No. | Name of Chelate                                                 | E (RHF)   | Dipole Moment | Point Group |  |  |  |  |  |
|        |                                                                 | a.u.      | Debye         |             |  |  |  |  |  |
| 1      | Ag -2 oximate                                                   | -730.762  | 2.9288        | C1          |  |  |  |  |  |
| 2      | Cd -2 oximate                                                   | -1219.868 | 6.2176        | C1          |  |  |  |  |  |
| 3      | Pb -2 oximate                                                   | -1176.653 | 3.5692        | C1          |  |  |  |  |  |
| 4      | Zn -2 oximate                                                   | -1236.899 | 7.5792        | C1          |  |  |  |  |  |
| 5      | Hg -2 oximate                                                   | -1214.599 | 7.4099        | C1          |  |  |  |  |  |

Table: 6 Energy, Diople moment and point group Data of chelates

# **IV. Conclusions**

The computed NMR chemical shifts of proton and <sup>13</sup>carbon of studied metal chelates i.e. Ag, Cd, Pb, Zn and Hg are compared with experimental data and found most of them are in good agreement. The assignments were confirmed with the help of animation process which is available in Gaussian 09 computer code. The results suggest that it shows the formation of chelates with five member ring for metals like cadmium , lead , zinc and mercury while silver shows six member ring formation.

## V. Acknowledgement

We thank Prin. K.D. Jadhav, Principal, Bharati Vidyapeeth Deemed University, Yashwantrao Mohite College, Pune for permission to publish this work.

#### References

- A. E. Shchavlev, A. N. Pankratov and Venelin Enchev, Intramolecular Hydrogan- bonding interactions in 2- nitroso phenol and nitrosonaphthols Ab Initio, Density Functinal and Nuclear Magnetic Resonance Theoretical syudy. J. Phys. Chem., A, 111, 7112 – 7123 (2007).
- [2]. Anto Vainiotalo and Jouko Vepsäläinen, <sup>1</sup>H and <sup>13</sup>C NMR studies on nitroso naphthols, and their complexation with the dioxouranium (VI) ion, Magnetic Resonance in Chemistry, Volume 24, Issue 9, pages 758–761 (1986).
- [3]. A.P. Avdeenko, G.M. Glinyanaya and V.V. Pirozhenko, Synthesis and spectral study of salts derived from quinine monodioximes., Russian Journal of Organic Chemistry, 35(10)1480-1487 (1999).
- [4]. F. Sundler, L. J. Larsson and R. Hakanson., Fluorescence histochemistry of peptide harmome- producing cells observations on the nitrosonaphthol method for the determination of tyrosine residues., Histochemistry, 50, 39 – 46 (1976).
- [5]. N.R. Gonewar, V. B. Jadhav K.D. Jadhav, and R.G. Sarawadekar, Theoretical calculations of infrared, NMR and electronic spectra of 2-nitroso-1, naphthol or 1-2 naphthoquinine-2 oxime and comparison with experimental data, Research in Pharmacy, 2(1): 18-25 (2012).
- [6]. Schlegel, H. B., Optimization of equilibrium geometries and transition structures, J. Comput. Chem., 3, 214-218 (1982).
- [7]. P. Hohenberg and W. Kohn, Inhomogeneous Electron gas, Phy. Rev. 136, B 864 B871 (1964).
- [8]. T. Shono, Y.Hayushi, K. Shinra., Bull. Chem. Soc. Jan., 44, 3179 3181 (1971).
- [9]. Wolinski K, Hilton J.F, Pulay P. Efficient implementation of the Gauge-Independent Atomic Orbital Method for NMR chemical shift calculations. J. Am. Chem Soc. 112, 8251–8260 (1990).
- [10]. J. L. Dodds, R. McWeeny and A. J. Sadlej, Mol. Phys. 41, 1419 (1980).
- [11]. Ditch, R., Self consistent perturbation theory of diamagnetism: I- A gauge-invariant LACO method for NMR chemical shifts, Mol. Phys. 27, 789-807 (1974).