Corrosion Inhibition Effect of Flower of *Euphorbia Caducifolia* for Iron in Acid Media

Reena Sharma, Alok Chaturvedi and R.K. Upadhyay

Synthetic and Surface Science Laboratory, S.P.C. Govt College, Ajmer, Raj. India Corresponding author: Reena Sharma

ABSTRACT: Corrosion is a natural process. It is gradual destruction of metal by chemical or electrochemical reaction with their environment. It may be prevented by either alloying or by anti rust solutions. The naturally occurring plant products are eco-friendly, compatible, nonpolluting, less toxic, easily available, biodegradable and economic to be used as corrosion inhibitor. Euphorbia caducifolia has been selected to study its corrosion inhibition efficiency. It is easily available in any season. It is native to Thar Desert of India and located on rocky terrain, hills. It is used for treatment of bleeding wound, cutaneous eruption, urinary problems, kidney stones, rheumatic pain, bronchitis, jaundice, diabities, stomach pain, hernia etc. It is also called "Thor" and "Danda-thor". It contains caudicifolin) norcycloartane type triterpene, cyclocaducinol, triterpenes euphol, tirucallol and cycloartenol. Corrosion inhibition efficiency was found 99.05% in $1N H_2SO_4$ acid with 0.8% corrosion inhibitor whereas it was 93.26% in $2N H_2SO_4$ with same concentration of inhibitor i.e. 0.8%.

Inhibition efficiency was studied in different concentration of acid (1N, 1.5N, 2N and 2.5N) with different concentration of inhibitor (0.2%, 0.4%, 0.6% and 0.8%). Weight loss and thermometric methods were used. Inhibition efficiency was found to be increase with increase in concentration of inhibitor and decrease with increase in acid strength.

Keywords: Alloying, anti rust solution, corrosion inhibitor, Euphorbia caducifolia, weight loss, thermometric.

Date of Submission: 10-08-2017 Date of acceptance: 18-08-2017

I. INTRODUCTION

Corrosion is a natural process. It is gradual destruction of metals by chemical or electrochemical reaction with their environment. It affects almost all the metals and decays the metallic properties of metals. It is unavoidable process but it can be controlled by either alloying or by using corrosion inhibitors (anti rust solution)¹.

By mass iron is the most common element on earth and fourth most common element in earth's crust. Pure iron is very soft so it is hardened and strengthened by impurities. It is fairly cheap that's why it is commonly used in manufacturing machine, tools, automobiles, machine parts, building parts etc. Steel is made with iron combined with different element including carbon, silicon and nickel etc.

In the acid, oxidation of metal occurs and hydrogen gas evolved. In the environment so many harmful gases and acids are present in the air which disintegrate and degrade the metal and alloy by corrosion. In industries acids are widely used in many processes so we need to use corrosion inhibitors which prevent or decrease the loss of metal.

A number of N and S containing ligands have been synthesized ²⁻⁵ which are found as effective corrosion inhibitors. Some heterocyclic compounds and their derivatives have been also used for metals as corrosion inhibitors in acidic media⁶⁻⁹. Epoxy esters inhibit the corrosion of aluminium and reduce evolution of hydrogen gas in aqueous solution of alkaline media^{10.} Schiff bases are good corrosion inhibitors¹¹⁻¹⁴. Mannich bases are also investigated as good corrosion inhibitor¹⁵⁻¹⁷. All the above components are good corrosion inhibitors but these are costly, toxic, pollutant and harmful so we need eco-friendly inhibitors.

The naturally occurring plant products are eco-friendly, compatible, nonpolluting, less toxic, easily available, biodegradable and economic to be used as corrosion inhibitor. A number of natural products extracted from plants are also found effective corrosion inhibitor like: *Mucuna pruriens* seed extract¹⁸, elephant grass species (*Pennisetum purpureum*)¹⁹, *Thymus satureioides* essential oil (TSEO)²⁰, *Argemone mexicana*²¹, *Withania somnifera*²², *Holly Basil*²³⁻²⁴, *ocimum sanctum*²⁵ etc.

Survey of literature reveals that extract of *Euphorbia caducifolia* is widely used in medicines. *Euphorbia caducifolia* is a Euphorbiaceae species native to Thar Desert of India, where latex of *E. caducifolia* (ECL) is used by the local inhabitants for treatment of bleeding wound, cutaneous eruption and other skin diseases²⁶. The GCMS analysis of fraction isolated from latex showed presence of methyl palmitate, 5,9-

heptadecadienoate, methyl 11 octadecenoate, methyl octadecenoate and 3,7,11,15-tetramethyl- 2-hexadecene-lol. Isolated fraction of E. caducifolia (IFEC) and latex of E. caducifolia (ECL) were tested against S. aureus, M. luteus, B. subtilis, E. coli, S. typhi, A. niger and C. albicans²⁷. However its corrosion inhibitory effect is unknown as yet. In the proposed investigation *euphorbia caducifolia* extract will be used as corrosion inhibitor in different acidic media like sulphuric acid, nitric acid and hydrochloric acid on iron.

PLANT DESCRIPTION

Euphorbia caducifolia is native to Thar desert of India and located on rocky terrain, hills. It is also called "Thor" and "Danda-thor".

Extract of *euphorbia caducifolia* is widely used in medicines. It is used for treatment of bleeding wound, cutaneous eruption, urinary problems, kidney stones, rheumatic pain, bronchitis, jaundice, diabetes, stomach pain, hernia etc.

It contains caudicifolin²⁸ (8,14-epoxy-17-hydroxy-11,13(15)-abietadien-15,12-olide) norcycloartane type triterpene, cyclocaducinol, triterpenes euphol, tirucallol and cycloartenol²⁹.

II. EXPERIMENTAL

Square specimen of iron of dimension 2.5x2.5 cm² containing a small hole of about 2mm diameter near the upper edge were used for studying of corrosion. Different solutions of HNO₃, HCl and H₂SO₄ were prepared using double distilled water.

Each specimen was suspended by a V shaped glass hook made of fine capillary tube and immersed in the beaker containing 100 ml of uninhibited and different concentration of inhibited test solutions. After the sufficient exposure, the specimen were taken out, washed thoroughly with running water and then dried with hot air dryer and then the final weight of each specimen was taken. The percentage inhibition efficiency was calculated³⁰ as

$$\eta\% = \frac{\Delta W_{\rm u} - \Delta W_{\rm i}}{\Delta W_{\rm i}} \times 100$$

and surface coverage (θ) was calculated as

$$\Theta = \frac{\Delta W_u - \Delta W_i}{\Delta W_i}$$

Where ΔW_u is weight loss of metal in acid solution in the absence of inhibitor and ΔW_i is weight loss of metal in acid solution in the presence of known amount of inhibition.

The Corrosion rate (CR) in mm/yr can be obtained by following equation

$$R_{corr.} = \frac{\Delta W \times 87.6}{D \times A \times T}$$

Where $\Delta W =$ weight loss in milligrams, D = metal density in g /cm³, A = area of sample in cm², T= time of exposure of the metal sample in hours.

Inhibition efficiency was also determined by thermometric method. In this method a specimen was immersed in a reaction chamber containing 100ml of solution at an initial temperature of 25°C. Temperature change were measured using a thermometer. Initially temperature increased slowly, then rapidly and attain a maximum value before falling. The maximum temperature was recorded. Percentage inhibition efficiency were calculated as

$$\eta\% = \frac{RN_f - RN_i}{RN_f} \times 100$$

Where RN_f and RN_i are the reaction number in the absence and presence of inhibitor respectively and reaction number is defined as

$$RN = \frac{T_m - T_i}{t}$$

Where T_m and T_i are maximum and initial temperature and t is the time (in minutes) required to reach the maximum temperature.

III. RESULT AND DISCUSSION

Weight loss, percentage inhibition efficiency, surface coverage and corrosion rate in 1N, 1.5N, 2N and 2.5N HCl, HNO_3 and H_2SO_4 solution with different concentration of flower extract inhibitor are given in table1 and table 2.

Table 1. Weight loss data (ΔW) and percentage inhibition efficiency (%) for iron in1N and 1.5N HCl, HNO₃ and H₂SO₄ with inhibitor of flower extract

Temperature : 25 ± 0.1 °C					Area of Specimen : 13 cm ²			
	1N HCl	(120 hours)		1.5 NHCl (96 hours)				
ΔW	I.E.	Surface	Corrosion	ΔW	I.E.	Surface	Corrosion	
	<i>(η%)</i>	coverage (θ)	rate		(η%)	coverage (θ)	rate	
1.813			12.928	1.726			15.384	
0.423	76.64	0.7664	3.0163	0.480	72.14	0.7214	4.2785	
0.365	79.85	0.7985	2.6027	0.456	73.53	0.7353	4.0645	
0.329	81.83	0.8183	2.3460	0.427	75.21	0.7521	4.4255	
0.304	83.19	0.8319	2.1677	0.367	78.68	0.7868	3.2712	
	1N HNO	3 (70 min)		1.5N HNO ₃ (35 min)				
1.780			1305.5	1.759			2580.3	
1.346	24.35	0.2435	987.23	1.439	18.16	0.1816	2110.8	
1.288	27.64	0.2764	944.69	1.392	20.86	0.2086	2041.9	
1.249	29.83	0.2983	916.08	1.367	22.23	0.2223	2005.2	
1.201	32.51	0.3251	880.88	1.337	23.94	0.2394	1961.2	
$1N H_2SO_4$ (48 hour)				$1.5N H_2 SO_4 (30 hour)$				
1.635			29.147	1.754			50.029	
0.204	87.51	0.8751	3.6367	0.317	81.91	0.8191	9.0418	
0.169	89.62	0.8962	3.0127	0.230	86.87	0.8687	6.5603	
0.117	92.81	0.9281	2.0857	0.181	89.67	0.8967	5.1627	
0.015	99.05	0.9905	0.2674	0.062	96.46	0.9646	1.7762	
	$\begin{array}{c} \Delta W \\ \hline 1.813 \\ 0.423 \\ 0.365 \\ 0.329 \\ 0.304 \\ \hline 1.780 \\ 1.346 \\ 1.288 \\ 1.249 \\ 1.201 \\ \hline 1.635 \\ 0.204 \\ 0.169 \\ 0.117 \\ 0.015 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IN HCl (120 hours) ΔW I.E. Surface Corrosion $(\eta\%)$ coverage (θ) rate 1.813 12.928 0.423 76.64 0.7664 3.0163 0.365 79.85 0.7985 2.6027 0.329 81.83 0.8183 2.3460 0.304 83.19 0.8319 2.1677 1N HNO ₃ (70 min) 1305.5 1.346 24.35 0.2435 987.23 1.288 27.64 0.2764 944.69 1.249 29.83 0.2983 916.08 1.201 32.51 0.3251 880.88 1N H ₂ SO ₄ (48 hour) 1.635 29.147 0.204 87.51 0.8751 3.6367 0.169 89.62 0.8962 3.0127 0.117 92.81 0.9281 2.0857 0.015 99.05 0.2674	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Area of Sp $1N$ HCl (120 hours)1.5 NHCl ΔW I.E.SurfaceCorrosion ΔW I.E. $(\eta\%)$ coverage (θ)rate $(\eta\%)$ 1.8130.42376.640.76643.01630.48072.140.36579.850.79852.60270.45673.530.32981.830.81832.34600.42775.210.30483.190.83192.16770.36778.681N HNO3 (70 min)1.5N HNO1.7801305.51.7591.34624.350.2435987.231.43918.161.28827.640.2764944.691.39220.861.24929.830.2983916.081.36722.231.20132.510.3251880.881.33723.941N H2SO4 (48 hour)1.5N H2SO1.6350.87513.63670.3170.16989.620.89623.01270.23086.870.11792.810.92812.08570.18189.670.01599.050.99050.26740.06296.46	Area of Specimen : 13 cm $1N$ HCl (120 hours)1.5 NHCl (96 hours) ΔW I.E.Surface ($\eta\%$)Corrosion rate ΔW I.E.Surface ($\eta\%$)0.42376.640.76643.01630.48072.140.72140.36579.850.79852.60270.45673.530.73530.32981.830.81832.34600.42775.210.75210.30483.190.83192.16770.36778.680.78681N HNO3 (70 min)1.5N HNO3 (35 min)1.7801.305.51.7591.4391.34624.350.2435987.231.43918.160.18161.28827.640.2764944.691.39220.860.20861.24929.830.2983916.081.36722.230.22231.20132.510.3251880.881.33723.940.23941N H ₂ SO4 (48 hour)1.5N H ₂ SO4 (30 hour)1.5N H ₂ SO4 (30 hour)1.6350.31781.910.81910.16989.620.89623.01270.23086.870.86870.11792.810.92812.08570.18189.670.89670.01599.050.29050.26740.06296.460.9646	

Fig.1 Variation of inhibition efficiency with concentration of flower extract for iron in 1N HCl, HNO₃ and H_2SO_4

Fig.2 Variation of inhibition efficiency with concentration of flower extract for iron in 1.5N HCl, HNO₃ and H_2SO_4

Table 2. Weight loss data (Δ W) and percentage inhibition efficiency (%) for iron in 2N and 2.5N HCl, HNO₃ and H₂SO₄ with inhibitor of flower extract

Temperature : 25 ± 0.1 C						Area of Specimen : 13 cm			
	2N HCL (74 hours)					2.5N HCl (60 hours)			
Conc. of	ΔW	I.E.	Surface	Corrosion	ΔW	I.E.	Surface	Corrosion	
inhibitor %		(%)	coverage (θ)	rate		(%)	coverage (θ)	rate	
Uninhibited	1.735			20.062	1.683			24.002	
0.2	0.636	63.34	0.6334	7.3543	0.623	62.94	0.6294	8.8850	
0.4	0.551	68.21	0.6821	6.3714	0.597	64.53	0.6453	8.5142	
0.6	0.528	69.56	0.6956	6.1055	0.569	66.19	0.6619	8.1148	
0.8	0.479	72.39	0.7239	5.5389	0.526	68.74	0.6874	7.5016	
	2N HNO ₃ (20 min)				2.5N HNO ₃ (12 min)				
Uninhibited	1.810			4646.4	1.645			7038.1	
0.2	1.586	12.34	0.1234	4071.4	1.537	06.53	0.0653	6576.0	
0.4	1.542	14.76	0.1476	3958.4	1.509	08.24	0.0824	6456.2	
0.6	1.522	15.91	0.1591	3907.1	1.466	10.84	0.1084	6272.2	

	r	1		1				
0.8	1.498	17.23	0.1723	3845.5	1.421	13.61	0.1361	6079.7
	2N H ₂ SO ₄ (24hours)				2.5N H ₂ SO ₄ (16hours)			
Uninhibited	1.695			60.433	1.829			97.817
0.2	0.388	77.07	0.7707	13.833	0.494	72.96	0.7296	26.419
0.4	0.289	80.29	0.8029	10.304	0.378	79.28	0.7928	20.215
0.6	0.223	86.81	0.8681	7.9508	0.330	81.91	0.8191	17.648
0.8	0.114	93.26	0.9326	4.0645	0.267	85.37	0.8537	14.279

Corrosion Inhibition Effect of Flower of Euphorbia Caducifolia for Iron in Acid Media

Fig.3 Variation of inhibition efficiency with concentration of flower extract for iron in 2N HCl, HNO₃ and H_2SO_4

Table - 3. Reaction number (RN) and inhibition efficiency (%) for iron in 2N, 3N and 4N HCl,	HNO_3 and
H_2SO_4 with inhibitor of flower extract	

Conc. of	2N HCl		3N	HC1	4N HCl	
inhibitor (%)	RN	I.E.	RN	I.E.	RN	I.E.
Uninhibited	0.2365		0.4013		0.7314	
0.2	0.1053	55.46	0.2198	45.21	0.4515	38.26
0.4	0.1036	56.19	0.2073	48.34	0.4319	40.94
0.6	0.0949	59.84	0.2035	49.27	0.4129	43.54
0.8	0.0894	62.18	0.1999	50.18	0.4074	44.29
	2N HNO ₃		3N HNO ₃		4N HNO ₃	
Uninhibited	1.3284		1.5492		1.8658	

0.2	0.8832	33.51	1.1377	26.56	1.6766	10.14
0.4	0.8645	34.92	1.1050	28.67	1.6282	12.73
0.6	0.8208	38.21	1.0602	31.56	1.5793	15.35
0.8	0.7884	40.65	1.0179	34.29	1.5558	16.61
	2N	H_2SO_4	3N	H_2SO_4	4N H	I_2SO_4
Uninhibited	0 6498		0.7216		0 9724	
	0.0120		0.7210		0.7721	
0.2	0.2902	55.34	0.3516	51.27	0.5879	39.54
0.2 0.4	0.2902 0.2804	55.34 56.84	0.3516 0.3309	51.27 54.14	0.5879 0.5712	39.54 41.25
0.2 0.4 0.6	0.2902 0.2804 0.2495	55.34 56.84 61.59	0.3516 0.3309 0.3169	51.27 54.14 56.08	0.5712 0.5879 0.5712 0.5601	39.54 41.25 42.39

Corrosion Inhibition Effect of Flower of Euphorbia Caducifolia for Iron in Acid Media

Fig.6 Variation of reaction number with concentration of flower extract for iron in 3N HCl, HNO₃ and H₂SO₄

Fig.7 Variation of reaction number with concentration of flower extract for iron in 4N HCl, HNO₃ and H₂SO₄

It can be seen from tables that inhibition efficiency of inhibitor increases with increasing concentration of inhibitor. The Maximum inhibition efficiency 99.05% was obtained in 1N H_2SO_4 at an inhibitor concentration of 0.8% for flower extract. Maximum inhibition efficiency in HCl was found 83.19% in 1N HCl with 0.8% corrosion inhibitor whereas maximum Inhibition efficiency in HNO₃ was obtained only 32.51% in 1N HNO₃ with 0.8% corrosion inhibitor. The result shows that flower extract have higher inhibition efficiency in H_2SO_4 than HCl and HNO₃.

The variation of percentage inhibition efficiency with inhibitor concentration is depicted graphically in fig-1, 2, 3 and 4 in 1N, 1.5N, 2N and 2.5N acid strength respectively for flower extract. It indicates that the inhibition efficiency increases with increasing inhibitor concentration.

From table 1 and table 2 it is clear that the surface coverage increase with increasing concentration of inhibitor and corrosion rate decrease with increasing concentration of inhibitor.

Inhibition efficiencies were also determined by using thermometric method. Thermometric experiments were carried out at higher concentrations of acid i.e. 2N, 3N and 4N because no appreciable changes of temperature were observed at lower concentrations of acid. Results summarized in table 3 show a good agreement with the results obtained by weight loss method. The variation of reaction number (RN) with inhibitor concentration is depicted graphically in fig. 5, 6 and 7 for HCl, HNO_3 and H_2SO_4 . The maximum inhibition efficiency was obtained with the highest concentration of inhibitor at lowest concentration of acid. Inhibition efficiency increases with increasing concentration of inhibitor and decreases with increasing concentration of acid. Both methods (weight loss as well as thermometric) show same trends in corrosion efficiency and results are in good agreement with each others.

IV. CONCLUSION

A study of flower extract of euphorbia caducifolia has shown that to be better corrosion inhibitor for iron in H_2SO_4 . Weight loss and thermometric methods were shown that inhibition efficiency of flower increases with increasing inhibitor concentration over the range 0.2% to 0.8% and and decreases with decreasing concentration of acid. The maximum inhibition efficiency was found up to 99.05% for iron in 1N H_2SO_4 at a concentration of 0.8% for flower extract whereas it was 83.19% in 1N HCl and 32.51% in 1N HNO₃ with same concentration of inhibitor. Thus, it was concluded that flower extract is a better corrosion inhibitor in H_2SO_4 than in HCl and HNO₃.

V. ACKNOWLEDGEMENT

One of the author's (Reena Sharma) is grateful to Department of Chemistry, S. P. C. Govt. College, Ajmer for laboratory assistance.

VI. BIBLIOGRAPHY

- [1]. D. Kesavan, M. K. Gopirama and N. Sulochana, Che. Sci., Rev. lett. 1(1), (2012), 1-8.
- [2]. H. Keypour, S. Salezadeh, R.D. Pritichand and R.V. Parish, Inorg. Chem., 11, (2000), 5787.
- [3]. W. T. Tseng, C. H. Lo and S. C. Lee, J. of Electrochem. Society, 148(5), (2001), C327.

- [4]. S. K. Pal, A. Krishnan, P.K. Das and A.G. Samuelsen, J. Organomettalic Chem., 575, (2000), 5587.
- [5]. R. Tripathi, A. Chaturvedi and R. K. Upadhyay, Res. J. Chem. Sci., 2(2), (2012), 18.
- [6]. E.E. Ebenso and P.C. Okafor, Anti Corros. Meth. and Mat., 50, (2003), 414.
- [7]. R.K. Upadhyay, S. Anthony and S.P. Mathur, *Polish J. of Chem.*, 43, (2007), 238.
- [8]. T. Sethi, A. Chaturvedi, R.K. Upadhyay and S.P. Mathur, Polish J. of Chem., 82, (2008), 591.
- [9]. G. Achary, H.P. Sachin, Y. Arthoba Naik, and T.V. Venkatesha *Mater. Chem. and Phy.*, **107**, (2008), 44-51.
- [10]. M. Cetin and Yildirim, Corros. Sci. 50, (2008), 155-156
- [11]. T. Sethi, A. Chaturvedi, R. K. Upadhyay, and S. P. Mathur, J. Chil. Chem. Soc., 53, (2007), 1206-1213.
- [12]. N. Jeengar, A. Chaturvedi and R. K. Upadhyay, International journal of recent scientific research, 4, (2013), 1562-1566
- [13]. R. Prasad, M. A. Quraishi and Ahmad. Corr. Sci. 52(3), (2010), 933-942.
- [14]. S. Safak, B. Duran, A. Yurt, G. Turkoglu. Corrosion Sci. 54, (2012), 251-259.
- [15]. P. Sharma, R.K. Upadhyay and A. Chaturvedi, Asian J. of Adv. Basic. Sci, 3(1), (2014), 67-73,
- [16]. M. A. Quraishi, Bulletin of Electrochemistry, 19, (2003), 49-52.
- [17]. D. Q. Zhang, L. X. Gao. and G. D. Zhou, Material and corrosion, 58, (2007), 594-598.
- [18]. C.O. Akalezi, C.E. Ogukwe, E.A. Ejele and E.E. Oguzie, Int. J. Corros. Scale Inhib., 5(2), 2016, 132-14
- [19]. E. B. Ituen, A. O. James and O. Akaranta, JMES, 8(4), (2017), 1498-1507
- [20]. F. Taoufik, A. Anejjar, A. Asdadi, R. Salghi, B. Chebli, M. EL Hadek and L. M. Idrissi Hassani, *JMES*, 8(2), (2017), 582-5
- [21]. P. Sharma, R. K. Upadhyay, A. Chaturvedi and R. Parashar, J.T.R.Chem., 15, (2008), 21
- [22]. J. Dubey, N. Jeenger, R. K. Upadhyay and A. Chaturvedi, *Reasearch journal of Recent science*, 1, (2012), 73-78
- [23]. N. Kumpawat, A. Chaturvedi and R. K. Upadhyay, Journal of Metal, 2, (2012), 68-73
- [24]. N. Kumpawat, A. Chaturvedi and R. K. Upadhyay, *Iranian journal of Material Science and Engineering*, **10**, (2013)
- [25]. N. Kumpawat., A. Chaturvedi and R. K. Upadhyay, *Research journal of chemical science*, 2(5), (2012), 51-56
- [26]. M. Goyal, B.P.Nagoriand and D.Sasmal, *Journal of Ethnopharmacology* 144(3), 18 December (2012), Pages 786-790
- [27]. M. Goyal, D. Sasmal and B. P. Nagori. J Intercult Ethnopharmacol, 1(2), (2012), 119-123
- [28]. Satti and N.K. et. al. *Phytochemistry*, **25**, (1986), 1411.
- [29]. N. Afza, A. Q. Khan, A. Malik and Y. Badar. Phytochemistry 28(7), (1989), 1982-1984.
- [30]. J.D. Talati and D.K. Gandhi, Indian J. Tech. 29, (1991), 277.

IOSR Journal of Pharmacy (IOSR-PHR) is UGC approved Journal with Sl. No. 5012

Reena Sharma. "Corrosion Inhibition Effect of Flower of Euphorbia Caducifolia for Iron in Acid Media." IOSR Journal of Pharmacy (IOSR-PHR), vol. 7, no. 8, 2017, pp. 30–37.